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Abstract

In drug discovery, the reliability of compound screening based on manual assess-

ments is compromised by potential bias, while existing methods lack robust risk control

measures. To address these challenges, we introduced conformal selection as an en-

hanced approach to optimize the compound screening process with balanced risks and

benefits. Leveraging conformal inference, our approach constructs p-values for each

candidate molecule to quantify statistical evidence for selection. The final selection of

molecules is determined by comparing these p-values against thresholds derived from

multiple testing principles. Our approach offers rigorous control over the false discovery

rate, ensuring validity independent of dataset size and requiring minimal assumptions.

By avoiding the estimation of prediction errors required in previous approaches, our

method achieves higher accuracy (power), thereby improving the ability to identify
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promising candidates. Furthermore, our method demonstrates superior computational

efficiency. We validate these advantages through numerical simulations on real-world

datasets.

Introduction

In drug discovery, the process of selecting a subset of compounds from a diverse molecular

pool typically precedes any resource-intensive steps. Compounds selected for further de-

velopment must demonstrate strong biological activity against their intended targets while

remaining inactive against a collection of potentially harmful off-targets. The evaluations

for activity on targets and inactivity on off-targets are commonly known as “screening” and

“counter-screening” respectively.

Since the relevant biological activities are often unavailable at the time of screening

or counter-screening, predictive models for these activities would be invaluable in enabling

chemists to make informed decisions during the selection process. Quantitative structure-

activity relationship (QSAR) regression models serve this purpose by predicting biological

activities based on molecular structure-derived features. Leveraging various machine learning

architectures such as the random forest (RF)1 or deep learning (DL),2 QSAR models can

typically achieve notable prediction accuracy when properly trained. The importance of

quantifying uncertainties in QSAR model predictions has also been widely recognized as a

key factor for making more reliable decisions. These uncertainty estimates typically provide

an assessment of the QSAR model’s prediction error or offer a range estimate of molecular

activity, rather than a single-point prediction.

Despite significant efforts to enhance QSAR model predictions and uncertainty quantifi-

cation, there has been limited discussion on the precise decision-making procedures. While

current methods offer chemists and analysts a wealth of information for decision-making, the

procedures themselves used in practice are often arbitrary, lack rigor, and fail to adequately

control the risk of false compound selection. While the eCounterscreen method effectively
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manages the false selection risk in sufficiently large datasets,3 it exhibits notable limitations

in computational efficiency and its applicability to datasets of arbitrary size.

This paper introduces a unified decision procedure that can efficiently provide guaran-

teed risk control under minimal assumptions, which are typically already inherent in the

use of QSAR models. We adopted conformal selection,4 a statistical selection methodology.

This approach maintains validity regardless of dataset size, performing effectively even when

the total number of available training molecules is as low as a few hundred. This method

integrates seamlessly with any pre-trained QSAR model, including those based on RF or

DL, without requiring adjustments. Furthermore, our approach minimizes computational

costs and exhibits superior efficiency compared to eCounterscreen. It achieves this by au-

tomatically determining the decision criterion based on a user-specified nominal risk level,

eliminating the need for an exhaustive search of appropriate thresholds in the eCounterscreen.

Overall, our study demonstrated that the conformal selection method not only ensures valid

risk control but also outperforms previous methods in selecting more compounds accurately

and efficiently.

Methods

We will first provide an overview of the entire conformal selection process and then offer

detailed explanations for some technical terms.

Problem Formulation

Before presenting the conformal selection procedure, we first establish some essential nota-

tions and concepts. Let X represent the available molecular structure features, and Y denote

the molecular activities. We use a dataset Dtrain = {(X1, Y1), . . . , (Xn, Yn)} to train a QSAR

model µ̂(X) to approximate Y . In this dataset, the molecular activities are observed, which

may be obtained from prior experiments. The conformal selection procedure also requires
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another calibration dataset Dcalib = {(Xn+1, Yn+1), . . . , (Xn+m, Yn+m))} where the molecular

activities Yn+1, . . . , Yn+m must also be known.

For the batch of incoming molecules subject to screening, we denote them as Dtest =

{X ′
1, . . . , X

′
k}, with the corresponding true activity levels Y ′

1 , . . . , Y
′
k remaining unobserved.

For convenience, we assume a screening setting where the objective is to select as many

compounds as possible with acceptably high activity levels, characterized by Y ′
j > c, j =

1, 2, . . . , k where c is the activity cutoff for a specific target. Our method is also applicable

to the counterscreening setting with a straightforward transformation of the data, such as

negating Y ′
j or transforming Y ′

j to binary targets 1{Y ′
j > c}. The final element required is

a user-specified risk level α. The risk, or the false discovery rate (FDR), is defined as the

average fraction of undesirable molecules with low activity levels Y ′
j ≤ c among all molecules

selected for advancement to the next stage, i.e.,

FDR = E

[
|R ∩ {j : Y ′

j ≤ c}|
max(1, |R|)

]

where R is a subset of {1, 2, . . . ,m} representing the indices of the selected molecules and

E is the expectation taken over the joint distribution of the test dataset Dtest. Intuitively,

this value quantifies the percentage of unsuccessful molecular selections. Under risk control,

it is advantageous for the selection procedure to identify as many desirable compounds as

possible. This selection performance is measured by statistical power, defined as the average

proportion of correctly selected molecules among all those suitable for selection, i.e.,

Power = E

[
|R ∩ {j : Y ′

j > c}|
{j : Y ′

j > c}

]
.

Conformal Selection

Based on the conformal prediction (CP) framework, conformal selection is a model-free se-

lection procedure that provides finite-sample FDR control. The term “finite-sample control”
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signifies that the effectiveness of this procedure in controlling the FDR is not dependent

on the size of the dataset. Conformal prediction, initially developed by Vovk et al.,5 is a

model-agnostic framework for uncertainty quantification, offering probabilistic guarantees on

range estimates of the target value. Jin and Candès4 extended this framework to establish

the conformal selection procedure, which can be summarized as follows:

1. Train an arbitrary QSAR model µ̂, for example random forest or deep learning, using

the training dataset Dtrain.

2. For each pair of molecular structure and activity (Xn+i, Yn+i), i = 1, 2, . . . ,m in the

calibration datasetDcalib, compute its corresponding “calibration nonconformity score”

Vi = V (Xn+i, Yn+i) where V is a pre-specified, fixed function called the nonconformity

measure. Common choices for V include:

V (X, Y ) = Y − µ̂(X) or V (X, Y ) = M · 1{Y > c} − µ̂(X)

where µ̂(X) = Ŷ is the QSAR-predicted activity level and M is a sufficiently large

number that exceeds the usual activity level by several orders of magnitude. We rec-

ommend the second option, the clip method, as it typically yields superior performance

in practice.

3. For each incoming test moleculeX ′
j, compute its “conformal p-value” defined as follows:

pj =
1

n+ 1

[∣∣{i = 1, . . . , n : Vi < V (X ′
j, c)}

∣∣+U ·
(
1+

∣∣{i = 1, . . . , n : Vi = V (X ′
j, c)}

∣∣)]

where U is the realized value from an independent uniformly distributed random vari-

able, U ∼ Unif(0, 1). The conformal p-value could be viewed as a smoothed rank of

“test nonconformity score” V (X ′
j, c) among V1, . . . , Vn. In the case where the molecular
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activities are continuous, a simplified version of the conformal p-value can be used:

pj =
1

n+ 1

[∣∣{i = 1, . . . , n : Vi ≤ V (X ′
j, c)}

∣∣+ 1
]
.

4. Apply the Benjamini-Hochberg (BH) procedure6 with a nominal level α to the set of

conformal p-values obtained in step 3, p1, . . . , pk to determine the selection set R. The

BH procedure is a widely-used method for controlling the false discovery rate (FDR)

and can be outlined in the following steps:

4.1 Order the conformal p-values from smallest to largest, and denote the sorted list

of p-values as p(1), . . . , p(k).

4.2 Compare each ordered conformal p-values to a series of linearly increasing critical

values α/k, 2α/k, . . . , α. Specifically, p(1) is compared to α/k, p(2) is compared to

2α/k, and so forth.

4.3 Determine r as the largest index for which p-value is less than its corresponding

critical value, i.e., p(r) < rα/k. Select every molecule with a p-value no larger

than p(r), resulting in R = {j : The rank of pj is no greater than r}.

Figure 1 summarizes the conformal selection procedure. The only requirement for the

validity of this method is data exchangeability, which means that the likelihood of the cali-

bration dataset and test dataset (Xn+1, Yn+1), . . . , (Xn+m, Yn+m), (X
′
j, Y

′
j ) for j = 1, 2, . . . , k,

is not affected by the relative order of data points.4,7 In other words, the dataset is equally

likely to be sampled regardless of any permutation applied to the data values (e.g. swapping

the first and second data point). This assumption is less stringent compared to identical

independent distribution (i.i.d.), and is satisfied when the training set of molecules and the

molecules to be predicted are randomly drawn from the same pool. The validity of the

procedure does not require any distribution or model assumptions.
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Figure 1: Scheme for the conformal selection method.

Nonconformity Measure and Nonconformity Scores

The concept of nonconformity measure originates from the conformal prediction (CP) frame-

work, a statistical approach designed to provide reliable predictions and quantifiable mea-

sures of uncertainty. This framework extends classical prediction methods by incorporating

a formal mechanism to assess the validity of predictions in a data-driven manner. The key

principle of conformal prediction is to generate prediction sets or intervals that contain the

true outcome with a predefined probability, thereby offering a probabilistic guarantee of

correctness.

In the CP framework, a nonconformity measure is a critical component that intuitively

quantifies how “atypical” or “nonconforming” an observation is. This framework supports a

variety of nonconformity measures, allowing for flexibility in selecting any metric that assesses

the alignment of a model with its data. Typically, the nonconformity measure involves

information provided by the prediction of QSAR models. While the use of nonconformity

measures is conceptually similar in both conformal prediction and conformal selection, there

are nuanced differences. We will first outline the role of nonconformity measures in conformal

prediction and then relate this to their application in our conformal selection procedure.
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In general, the nonconformity measure is a real-valued function that accepts a pair of

feature (structural feature) and target value (activity level) as input. The output value

evaluates of how “atypical” this pair is. For example, given a well-trained model µ̂, the

pair of feature and target (X, Y ) is deemed atypical when the absolute error |Y − µ̂(X)| is

significantly high. The goal of conformal prediction is to provide prediction intervals (PI)

for the target at any feature level X; for an incoming data point X with an unobserved cor-

responding target, the conformal PI at X includes all possible target value Y such that the

pair (X, Y ) is not excessively atypical. The atypicality is assessed based on the nonconfor-

mity measures computed from the calibration dataset, called the calibration nonconformity

scores V1 = V (Xn+1, Yn+1), . . . , Vm = V (Xn+m, Yn+m). For conformal prediction, the choice

of the nonconformity measure is crucial to the shape and effectiveness of the resulting PI,

and much effort have been devoted to design more efficient nonconformity scores to improve

the predictive performance and adaptiveness of the intervals.8–11 In conformal selection the

objective differs, which changes the principle for choosing the nonconformity score. An in-

coming molecule is selected if its activity level X ′
j, when paired with the activity level cutoff

c, is atypical enough, i.e., the nonconformity score V (X ′
j, c) is sufficiently extreme. The level

of atypicality is again accessed using the calibration nonconformity scores. While selecting

an appropriate nonconformity measure remains essential for achieving optimal selection per-

formance, the selected nonconformity measure must also satisfy additional requirements, as

it is used to construct conformal p-values.

Conformal p-values

The problem of deciding whether to select a test molecule can be framed within the hypoth-

esis testing framework. Since the alternative hypothesis typically pertains to a finding or

discovery, we formulate it as

H1 : Y
′
j > c
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and the acceptance of the alternative hypothesis corresponds to selecting the compound as

the activity level Yj exceeds the cutoff c. Naturally, the null hypothesis H0 : Y ′
j ≤ c is

defined as the complement of H1. Each compound under consideration represents a distinct

hypothesis test.

Because our decisions are one-sided (we are only concerned with whether the activity

level is exceeds the cutoff, but not how much), it is reasonable to use nonconformity scores

that would produce one-sided PIs if applied in conformal prediction, such as the signed

error y − µ̂(x). Hypothesis testing in statistics frequently relies on p-values, and we use the

conformal p-values to decide the hypothesis test described above. As formulated by Vovk et

al. and Bates et al.,5,7 the oracle conformal p-value is defined as:

p∗j =
1

n+ 1

[∣∣{i = 1, . . . , n : Vi < V (X ′
j, Y

′
j )}

∣∣+ U ·
(
1 +

∣∣{i = 1, . . . , n : Vi = V (X ′
j, Y

′
j )}

∣∣)].
We note the difference between this oracle p-value and the conformal p-value presented in

previous section. As the ground truths Yj are unobserved, we substitute them with the

activity cutoff c to obtain the following p-value:

pj =
1

n+ 1

[∣∣{i = 1, . . . , n : Vi < V (X ′
j, c)}

∣∣+ U ·
(
1 +

∣∣{i = 1, . . . , n : Vi = V (X ′
j, c)}

∣∣)]

To preserve the statistical properties of the p-values after substitution, an additional condi-

tion must be imposed on the nonconformity scores: they must be increasing in their second

argument, a property known as monotonicity.4 Both of the suggested nonconformity scores,

the signed error and the clip method, satisfy this condition.

Controlling the FDR through the BH Procedure

The decision to select a particular molecule, or to accept a single hypothesis test as formulated

above, can be made using the conformal p-value. For a specified level of risk α (representing

the type-I error rate, or the probability of falsely selecting a compound), we accept H1

9
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and select the corresponding compound only if the p-value is less than α. However, in the

context of multiple simultaneous hypothesis tests, the practice of selecting every compound

with a p-value below α does not ensure control over the overall false discovery rate (FDR),

the proportion of false selections among all actual selections.∗ To achieve FDR control,

it is necessary to utilize correction methodologies, such as the Benjamini-Hochberg (BH)

procedure,6 which adjusts for multiple comparisons and regulates the proportion of false

discoveries among the selected hypotheses.

The BH procedure is extensively employed in scientific studies involving the simultaneous

evaluation of multiple statements or discoveries. Without applying a correction procedure,

the likelihood of making a false discovery purely by chance increases as the number of hy-

potheses tested grows, and asserting discovery without solid evidence is clearly undesirable

in formal scientific research. The BH procedure originally relies on the assumption of in-

dependence between the input p-values. This assumption generally holds for procedures

that treat each incoming molecule in isolation. However, because each conformal p-value

is derived from a shared set of calibration nonconformity scores, the input p-values are not

independently distributed. Fortunately, Benjamini and Yekutieli12 generalized the indepen-

dence assumption to a less restrictive condition one known as positive regression dependency

on a subset (PRDS). Under the PRDS property, the Benjamini-Hochberg (BH) procedure

remains valid. Jin and Candès4 proved that the conformal p-values are PRDS, thereby

ensuring the integration of the CP framework while preserving valid FDR control.

We note that the false discovery rate is only one measure of the risk under the multiple

hypothesis test setting. Another widely used metric is the family-wise error rate (FWER),6

which is defined as the probability of making at least one false rejection among all the

hypotheses tested. Numerically, FWER is always higher than FDR, indicating that FWER

demands more stringent risk control. FWER is particularly suited to situations where even

a single false selection could invalidate the entire result. However, in our setting, such strict

∗In greater detail, such sequential approach may control the per-comparison error rate (PCER), the
expected fraction of false selection among all decisions made.
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control is unnecessary and would result in a considerable loss of statistical power.

Datasets

In this study, we use a collection of 15 Kaggle QSAR datasets. The Kaggle datasets were

originally employed in the 2012 Merck & Co., Inc., Rahway, NJ, USA “Molecular Activity

Challenge” Kaggle competition and released in Ma et al.2 The datasets vary in size and

pertain to diverse tasks, including predictions of on-target potency, off-target activity, and

absorption, distribution, metabolism, and excretion (ADME) properties. The molecular

descriptors used are the combined set of “atom pair” (AP) descriptors from Carhart et al.13

and “donor-acceptor pair” (DP) descriptors.14 Each dataset is partitioned into two subsets:

a time-split training set and a test set. For this study, we utilize only the training sets, as

evaluation of the selection methods requires access to the true activity levels.

To perform selection, each dataset must be assigned a corresponding activity cutoff. In

practice, activity cutoffs are not strictly defined and often vary within a reasonable range,

as different chemists or analysts may adopt slightly different thresholds. Therefore, we

select a range of activity cutoffs for each dataset, ensuring that the proportion of desirable

chemicals ranges from 8% to 60%. This allows us to investigate whether the variation in

cutoff selection affects the performance of the methods. The number of compounds, number

of structural features, activity cutoffs and percentage of desirable chemicals of the 15 datasets

are summarized in Table 1. Here, we assume a counterscreening setting, where desirable

compounds are defined as those with activity values lower than the specified activity cutoff.

This is used to maintain consistency with the eCounterscreen method, which was originally

designed for counterscreening.
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Table 1: Summary of dataset sizes, number of descriptors, activity cutoffs, and percentages
of desirable compounds for Kaggle datasets

Dataset
Number of
Compounds

Number of
Desciptors

Activity Cutoff
Percentage of

Desirable Chemicals

3A4 37,241 9,177 4.35 57.3%
CB1 8,716 5,555 6.5 31.7%
DPP4 6,148 5,025 6 34.7%
HIVINT 1,815 4,186 6 27.4%
HIVPROT 3,212 5,751 4.5 5.7%
LOGD 37,388 8,623 1.5 13.3%
METAB 1,569 4,372 40 47.3%
NK1 9,965 5,592 6.5 9.7%
OX1 5,351 4,601 5 19.7%
OX2 11,151 5,462 6 23.2%
PGP 6,399 4,731 -0.3 14.7%
PPB 8,651 4,991 1 20.0%
RAT F 6,105 5,525 0.3 7.8%
TDI 4,165 5,712 0 24.2%
THROMBIN 5,059 5,282 6 36.9%

Results

We conducted a series of experiments to compare our purposed method with the approach

introduced by Sheridan et al.3 In each experiment, the dataset is randomly partitioned into

three subsets: a training set (50% of the data), a calibration set (35%), and a test set

(15%). The training set is used to train a random forest QSAR model, while the test set

is employed to evaluate the selection performance of the competing methods. As discussed

in previous sections, the calibration set is used to compute nonconformity scores for the

conformal selection method, with the clip method serving as the nonconformity measure.

The eCounterscreen method, by contrast, requires an additional split for the calibration set.

We will refer to them as the calibration-1 set (20% of the whole data) and calibration-2

set (15%). The functionality of these datasets depends on the method used to estimate

prediction uncertainty. One common measure of prediction uncertainty is the expected

root mean square error (RMSE) of predictions, which can be approximated using different

techniques.

In this comparison, we consider two competing approaches: the first, introduced by

12
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Sheridan et al. (2004),15 estimates RMSE through cross-validation and binning; the second,

from Sheridan et al. (2013),16 employs an auxiliary error model. We refer to these two

procedures as “eCounterScreen-bin”15 and “eCounterScreen-pred”16, respectively. For the

eCounterScreen-bin method, we allocate 50% of the overall data for model training and 20%

for validation. The data for training and validation are randomly selected from the training

set and the calibration-1 dataset. In the eCounterScreen-pred method, the calibration-1

dataset is used exclusively to train the error model. In both approaches, the calibration-

2 dataset is employed to determine an appropriate decision threshold for the z-score, as

outlined in Sheridan et al. (2015).3 By integrating these two estimation techniques, we

establish two distinct decision procedures within the framework of eCounterscreen. The

experiments are repeated for 100 times with the average performances reported. For each

iteration, a random data split is performed, and all methods are evaluated on the same data

partitions. Figure 2 illustrates the data splitting process.

Figure 2: Illustration of the data splitting setups used for the three methods.

Figure 3(a) shows the control of risk (FDR) with varying nominal risk levels, using only

a small randomly selected subset (10%) of the entire dataset. This simulates the practi-

cal scenarios where only a limited number of compounds are available for model training

and calibration. The nominal risk levels vary from 10% to 50% in 5% increments. The

actual observed risk levels are assessed on the test sets as the percentage of falsely selected
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Figure 3: FDP control of conformal selection and eCounterscreen on (a) 10% subsets of the
15 Kaggle datasets, and (b) on the entirety of the datasets, with nominal risk levels varying
from 10% to 50%. The grey dashed lines represent perfect risk control, where the observed
risk matches the specified risk level exactly.
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molecules. As shown in the plot, the observed risks for the conformal selection method are

generally lower than the nominal risk levels (dashed line). The close alignment between the

observed and nominal risks demonstrates the accurate risk control achieved by the conformal

selection method. In contrast, eCounterscreen often exhibit uncontrolled risks, particularly

with smaller datasets such as HIVINT or HIVPROT, and when stringent risk thresholds,

i.e. low nominal FDP values, are applied. All methods exhibit improved FDP control when

the entirety of the datasets is used, as shown in Figure 3(b). Nevertheless, eCounterscreen

may still fail to control the FDP under certain settings. Conformal selection provides perfect

FDP control for all datasets.

Figure 4 compares the ability of different methods to identify desirable chemicals, i.e.

power, using (a) 10% subset of the datasets and (b), the entire dataset. Overall, the power

of the conformal selection method is at least comparable to, if not greater than, that of

eCounterscreen. For certain datasets, such as OX1 and TDI, the conformal selection method

demonstrates a significant performance advantage. This enhanced power may be attributed

to the fact that eCounterscreen rely on prediction uncertainty for decision-making, which

can be prone to bias or inaccuracies. In contrast, conformal selection inherently avoids this

source of potential error, resulting in increased statistical power.

Table 2: Average runtime (in seconds) of different algorithms on 10% subsets and the entirety
of the 15 Kaggle datasets

10% Subsets Entirety

Dataset RMSE-bin RMSE-pred Conformal Selection RMSE-bin RMSE-pred Conformal Selection

3A4 405.04 6.37 3.45 69772.69 67.67 43.27
CB1 17.42 1.20 0.62 2089.76 16.08 7.46
DPP4 8.27 0.86 0.46 920.32 10.04 4.78
HIVINT 1.50 0.42 0.27 68.30 2.48 1.11
HIVPROT 3.59 0.60 0.27 325.55 6.25 1.91
LOGD 357.24 5.99 2.82 79632.30 70.51 38.97
METAB 1.40 0.42 0.26 66.22 1.86 0.90
NK1 21.41 1.36 0.59 4507.54 15.99 6.85
OX1 5.53 0.71 0.39 1032.14 5.76 3.07
OX2 25.21 1.32 0.67 5518.00 14.30 8.33
PGP 5.32 0.50 0.29 454.84 5.13 2.91
PPB 8.68 0.64 0.39 889.71 7.78 4.90
RAT F 5.15 0.52 0.28 471.59 5.41 3.41
TDI 2.96 0.42 0.25 230.02 3.61 2.12
THROMBIN 3.89 0.45 0.26 318.90 4.70 2.42

Table 2 compare the runtime of various algorithms on 10% subsets and the entirety of
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Figure 4: Power of conformal selection and eCounterscreen on (a) 10% subsets of the 15
Kaggle datasets, and (b) on the entirety of the datasets, with nominal risk levels varying
from 10% to 50%.
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the 15 Kaggle datasets. For each dataset and across both data proportions, the runtime

of the conformal selection method is consistently a fraction of that required by RMSE-pred

and is negligible compared to the significantly more computationally intensive RMSE-bin

approach. Given its linear computational complexity, conformal selection is well-suited for

efficient application to large datasets such as 3A4 or LOGD. In contrast, the high compu-

tational demands of RMSE-bin may pose significant limitations or render it infeasible when

computational resources are constrained. A more detailed explanation of computational

complexity is provided in the Discussion section.

Discussion

In this paper, we propose the application of conformal selection method to the drug screening

and counter-screening processes, which consistently demonstrated valid risk control across all

datasets, including those with limited training samples. In contrast, eCounterscreen failed to

consistently achieve reliable risk control in such scenarios. This shortcoming arises primarily

from the mechanism of eCounterscreen, which estimates “typical threshold level” for the

risk, based on historical data. When the historical data is limited in size or of poor quality,

the estimation of the threshold can become biased, compromising the method’s ability to

control risk. This effect is corroborated by our simulated experiments. On the other hand,

the risk control provided by the conformal selection method is mathematically guaranteed

regardless of the sample size.

The eCounterscreen method bases its decisions on the z-score, which rely on an es-

timate of prediction uncertainty, typically represented by the expected root mean square

error (RMSE).3 The estimation of RMSE has been widely explored by Adaptability Domain

(AD) research, a subfield in QSAR.17,18 One common approach is to use the similarity be-

tween the incoming molecule and the training molecules as a predictor.15,19 However, this

similarity-based approach has quadratic computational complexity, making it computation-
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ally expensive. While later works proposed the use of error models that does not rely on

similarity predictors,16 fitting these error models also incurs significant computational cost.

Additionally, the search for an appropriate z-score decision cutoff further increases the over-

all computational burden. In contrast, our conformal selection method requires only three

linear iterations to compute the nonconformity score, calculate the conformal p-value, and

execute the BH procedure. Combined with enhanced statistical power and greater flexibility,

these advantages suggest that conformal selection is well-suited for practical implementation

in drug discovery screening and counterscreening workflows.

Building upon conformal selection, several potential extensions could be explored. One

key area for future work is expanding the method to handle multiple target assays, as the

current approach focuses on filtering chemicals based on a single target. While repeating

the procedure for each target independently is possible, this may not be optimal in terms

of statistical power. Furthermore, sequential application of conformal selection across mul-

tiple targets could invalidate the control of the overall false discovery rate (FDR), leading

to a statistical issue known as the intersection hypothesis testing (IHT) problem. Address-

ing this would necessitate additional adjustment methods, which introduce complexity and

could further diminish selection power. Thus, developing an integrated procedure capable

of selecting candidate chemicals across multiple target assays simultaneously would be a

valuable enhancement.

In practice, the testing molecules may not be generated in the same manner as the

training and calibration molecules. For instance, chemists might prioritize certain molecular

structures when selecting screening compounds,20 potentially violating the exchangeabil-

ity assumption. Fortunately, when the disparity between training, calibration and testing

molecules can be captured by covariate shift, the weighted conformal selection method21

offers an efficient solution to this problem. Thus, a natural next step would be to evaluate

the performance of this weighted method in drug discovery applications.

Finally, we observed that the predictive accuracy of the QSAR model is critical to the

18

https://doi.org/10.26434/chemrxiv-2024-pf3ph ORCID: https://orcid.org/0009-0008-9112-8670 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-pf3ph
https://orcid.org/0009-0008-9112-8670
https://creativecommons.org/licenses/by-nc-nd/4.0/


performance of our approach. When the QSAR model demonstrates poor predictive capa-

bility, the resulting statistical power of conformal selection is typically low. However, QSAR

prediction accuracy is not always perfectly correlated with selection performance. In some

cases, once the prediction accuracy, as measured by out-of-sample R2, reaches a certain

threshold, further increasing model complexity and prediction accuracy provides minimal

improvement in selection power. This insight suggests that blindly increasing QSAR model

complexity may not be the optimal approach in practical applications. This observation

warrants further investigation in future studies.
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