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Abstract
Study objective  This study investigates the potential to improve emergency department (ED) triage using machine learning 
models by comparing their predictive performance with the Canadian Triage Acuity Scale (CTAS) in identifying the need 
for critical care within 12 h of ED arrival.
Methods  Three machine learning models (LASSO regression, gradient-boosted trees, and a deep learning model with 
embeddings) were developed using retrospective data from 670,841 ED visits to the Jewish General Hospital from June 
2012 to Jan 2021. The model outcome was the need for critical care within the first 12 h of ED arrival. Metrics, including 
the areas under the receiver-operator characteristic curve (ROC) and precision-recall curve (PRC) were used for performance 
evaluation. Shapley additive explanation scores were used to compare predictor importance.
Results  The three machine learning models (deep learning, gradient-boosted trees and LASSO regression) had areas under 
the ROC of 0.926 ± 0.003, 0.912 ± 0.003 and 0.892 ± 0.004 respectively, and areas under the PRC of 0.27 ± 0.01, 0.24 ± 0.01 
and 0.23 ± 0.01 respectively. In comparison, the CTAS score had an area under the ROC of 0.804 ± 0.006 and under the PRC 
of 0.11 ± 0.01. The predictors of most importance were similar between the models.
Conclusions  Machine learning models outperformed CTAS in identifying, at the point of ED triage, patients likely to need 
early critical care. If validated in future studies, machine learning models such as the ones developed here may be considered 
for incorporation in future revisions of the CTAS triage algorithm, potentially improving discrimination and reliability.
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Objectif de l’étude  Cette étude vise à déterminer les possibilités d’amélioration du triage des services d’urgence (DE) au 
moyen de modèles d’apprentissage automatique en comparant leur rendement prédictif avec l’échelle canadienne d’acuité 
du triage (ETSC) Déterminer le besoin de soins intensifs dans les 12 heures suivant l’arrivée du DS
Méthodes  Trois modèles d’apprentissage automatique (régression LASSO, arbres à gradient amplifié et modèle 
d’apprentissage profond avec intégration) ont été développés en utilisant des données rétrospectives de 670841 visites au 
ED de juin 2012 à janvier 2021. Le modèle a révélé un besoin de soins intensifs dans les 12 premières heures après l’arrivée 
des urgences. Les mesures, y compris les zones sous la courbe caractéristique du récepteur-opérateur (ROC) et la courbe de 
précision-rappel (PRC), ont été utilisées pour l’évaluation du rendement. Des scores d’explication additionnelle de Shapley 
ont été utilisés pour comparer l’importance du prédicteur.
Résultats  Les trois modèles d’apprentissage automatique (apprentissage profond, arbres à gradient et régression LASSO) 
avaient des aires sous le ROC de 0,926 0,003, 0,912 0,003 et 0,892 0,004 respectivement, et des aires sous le PRC de 0,27 
0,01, 0,24 0,01 et 0,23 0,01 respectivement. En comparaison, le score CTAS avait une aire sous le ROC de 0,804 0,006 et 
sous le PRC de 0,11 0,01. Les prédicteurs les plus importants étaient similaires entre les modèles.
Conclusions  Les modèles d’apprentissage automatique ont surpassé l’ACST dans l’identification, au moment du triage des 
patients en urgence, de ceux qui pourraient avoir besoin de soins critiques précoces. Si les études futures sont validées, des 
modèles d’apprentissage automatique comme ceux développés ici pourraient être envisagés pour une intégration dans les 
révisions futures de l’algorithme de triage CTAS, ce qui pourrait améliorer la discrimination et la fiabilité.

Mots‑clés  Triage des services d’urgence · Apprentissage automatique · Intelligence artificielle · Opérations des services 
d’urgence

Clinician Capsule 

What is known about the topic?
The current standard of care in ED triage is the 
use of a 5-point triage scale based on expert opin-
ion such as CTAS—which is used uniformly across 
Canada.

What did this study ask?
Can machine learning models trained on historical 
ED data outperform CTAS in their ability to iden-
tify patients at ED triage who are likely to need 
early critical care?

What did this study find?
Three machine learning models all outperformed 
CTAS alone in their ability to predict the need for 
critical care within 12 h of ED triage.

Why does this study matter to clinicians?
Machine Learning models such as the one presented 
here may be considered for incorporation into 
CTAS triage protocols and may improve the reli-
ability and discrimination of ED triage.

Introduction

Emergency Department (ED) triage is the first point of clini-
cal contact with patients entering an ED and is intended to 
identify those most urgently in need of care [1, 2]. It attempts 

to prioritize high-risk visits and minimize the effects of 
delayed treatment among those who need it urgently [3]. It 
is especially important in the context of ED crowding—a 
longstanding problem [4–6] associated with delays in treat-
ment, decreased quality of care [7–12] and increased mortal-
ity [13]. The current standard of care in ED triage employs 
validated 5-point triage scales [2] such as the Canadian 
Triage Acuity Scale (CTAS) [14–16] which is used across 
Canada and in several other countries [2, 17]. CTAS and 
other widely used 5-point triage scales demonstrate signifi-
cant inter-rater variability and suboptimal accuracy and pre-
dictive ability [2, 17, 18]. The CTAS algorithm uses expert 
opinion to encode presenting complaints, vital signs, pain 
and some elements of past medical history or physical exam 
to generate a 5-level score associated with a recommended 
minimum time to physician contact (Appendix A).

Machine learning algorithms trained to predict clinical 
outcomes based on historical data have demonstrated supe-
rior predictive ability to some established 5-point triage 
scales [19–26]. Such tools can encode hard ED outcome 
data that could potentially improve current approaches to 
triage by decreasing inter-rater variability, increasing accu-
racy in the prediction of clinical outcomes and decreasing 
door-to-admission decision times [27]. Machine learning has 
recently been used with CTAS data to investigate the poten-
tial of assisting triage in a virtual care context [28, 29], but 
no reported machine learning triage tools use CTAS data to 
predict clinical outcomes.

This report uses historical data collected using CTAS to 
develop 3 machine learning models to predict, at the time 
of ED triage, critical illness within 12 h of ED triage. The 



Canadian Journal of Emergency Medicine	

Vol.:(0123456789)1 3

machine learning models’ ability to predict the need for early 
critical care was compared to the predictive performance of 
CTAS alone.

Methods

Study design and participants

This was a retrospective cohort study including all con-
secutive adult (≥ 18 years old) patient visits to the Jewish 
General Hospital ED between June 2012 and Jan 2021. The 
Jewish General Hospital is a tertiary care center receiving 
approximately 95,000 visits per year. Since May 30, 2012, 
our center has been using the MedUrge electronic triage 
tool which implements the 2008 version of CTAS. We used 
all available data up to 2021—reserving data after 2021 
for validation of the derived models—therefore no sample 
size calculation was done a priori. The local research eth-
ics board approved the study and waived the requirement 
for patient consent because it was retrospective and used 
no patient identifying data. We have followed the TRIPOD 
reporting guidelines [30].

Measurements

During ED triage at our hospital, a nurse enters triage data 
into MedUrge and assigns a triage score. The outcome data 
were extracted from MedUrge and other electronic health 
records. We excluded repeat, cancelled or incomplete triages 
(missing a triage score) and visits where patients left without 
being seen or against medical advice or were transferred to 
an outside hospital.

Predictors

In MedUrge, presenting symptoms, past medical history and 
physical exam findings relevant to CTAS are chosen from 
a large, but finite list of possible entries and were included 
as predictors along with demographic data, vital signs, a 
patient-reported pain level. All predictors were available at 
the time of triage (see Table 1).

Outcome

A composite, critical illness outcome was defined to have 
occurred if there was an ICU consultation placed in the 
ED, admission to a critical care bed (ICU, CCU or other) 
within 12 h after arrival or death within 24 h after arrival. 
We included ICU consultation as a surrogate for ICU admis-
sion as, due to boarding times, patients sometimes receive 
critical care interventions in our ED for long enough that 
they can ultimately be admitted to a lower acuity ward. We 

used a 12-h outcome window because we believe the clinical 
course of patients with a short-term need for critical care is 
more likely to be affected by a delay to care of minutes to 
hours caused by mis-triage. In our ED, 90% of patients are 
assessed by a physician within 4 h and 90% of ICU admis-
sions take place within 34 h of arrival. Across Canada, 90% 
of ED patients see a physician within 5 h and 90% of admis-
sions take place within 49 h of arrival [31, 32].

Data analysis

We developed 3 machine learning models and a reference 
model based on the CTAS triage score to predict the out-
come. The included visits were randomly split into training 
(used to teach the model how to predict the outcome—68%), 
tuning (used to tune key model characteristics—17%) 
and test sets (used exclusively for model evaluation after 
development complete—15%). The reference model used 
the CTAS triage score as a single predictor in a logistic 
regression. The LASSO regression model used 10 predic-
tors selected by a machine learning process. The gradient 
boosting model used 298 predictors selected based on the 
frequency of occurrence and correlation with the outcome. 
The deep learning model used all available predictors using 
embeddings to handle text-based data such as presenting 
complaints and past medical history. The online supple-
ment contains details of the machine learning model train-
ing (Appendix B) and missing data handling (Appendix C).

All four models (CTAS alone, LASSO, tree-based and 
deep learning) were evaluated in the same test set—which 
was not used during model development. We assessed the 
areas under the receiver-operator characteristic curve (ROC) 
and the precision-recall curve (PRC). In rare outcomes, such 
as ours, the positive predictive value is of great interest 
because it reflects the number of false positives produced by 
predicting critical illness at triage and the Precision-Recall 
curve, which plots the positive predictive value against the 
sensitivity, can be a useful and more discriminating tool than 
the ROC to assess performance. Confidence intervals were 
generated using 5000 bootstrapped samples from the test 
set. We used Shapley additive explanations [33] to compare 
the importance of predictors in the three machine learning 
models.

The area under the ROC may be interpreted as the prob-
ability that a model will correctly rank a random visit result-
ing in the outcome over a random visit not resulting in the 
outcome. We considered a difference in AUC of more than 
0.05—corresponding to a 5% probability of mis-ranking 
such a pair of visits—to be clinically significant. The area 
under PRC can be interpreted as the average positive predic-
tive value over all possible threshold choices. We consid-
ered a difference of more than 0.05 in the area under PRC, 
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Table 1   A list of predictors available at the time of triage and included as possible predictors of a patient’s clinical outcome in all 3 machine 
learning models
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corresponding to a 0.05 difference in average positive pre-
dictive value, to be clinically significant.

Data analysis used python 3.9.13 (python.org).

Results

Characteristics of study subjects

The total number of visits included was 670,841. Overall, 
9440 (1.4%) of the visits experienced the study outcome 
(4605 ICU consulted in ED, 1042 deaths and 4802 admit-
ted to critical care within 12 h). The characteristics of the 
training, tuning and test cohorts are shown in Table 2. There 
were 2038 visits with a mid-range triage score of 3 that 
experienced the critical care outcome (0.7% of the CTAS 3 
patients). Missingness in our data is described in Appendix 
C.

Decision curves for the deep learning and CTAS alone 
models (Appendix E) suggest there would be a benefit to 
using the deep learning model at any true ideal risk thresh-
old for intervention but that the benefit would be particularly 
strong if the ideal risk threshold is less than 0.2.

Model Performance

ROC and PRC for CTAS and the 3 machine learning mod-
els are shown in Figs. 1 and 2, respectively. Table 3 shows 
the performance characteristics of the models. The deep 
learning model demonstrated statistically significantly 
improved discrimination in both the sensitivity–specificity 
and sensitivity-positive predictive value planes (area under 
ROC 0.926 ± 0.003 and area under PRC of 0.27 ± 0.01). The 
gradient boosted trees (area under ROC of 0.912 ± 0.003, 
area under PRC of 0.24 ± 0.01) and LASSO regression (area 
under ROC of 0.892 ± 0.004, area under PRC of 0.23 ± 0.01) 
models were inferior to the deep learning model, but all 3 
machine learning models significantly outperformed CTAS 
alone (area under ROC of 0.804 ± 0.006 and area under PRC 
of 0.11 ± 0.01) in predicting the critical illness outcome. 
Calibration curves (Appendix D) for all models had slopes 
close to 1 with intercepts near 0.  

Many of the most important predictors (Fig. 3) were 
similar between the models. In the deep learning and gradi-
ent-boosted trees models, the combined importance of the 
remaining predictors outweighed the importance of the most 
important predictors.

Table 2   Characteristics of the 
included visits

Characteristic Training Set 
N = 456,171 (%)

Tuning Set N = 114,043 
(%)

Test Set 
N = 100,627 
(%)

Age 52.3 ± 21.4 52.5 ± 21.4 52.5 ± 21.5
Gender (male) 44.0 43.7 43.7
Arrival by ambulance 18.5 18.6 18.7
CTAS 1 0.72 0.73 0.79
CTAS 2 22.6 22.4 22.4
CTAS 3 46.5 46.6 46.7
CTAS 4 24.3 24.4 24.2
CTAS 5 5.97 5.85 5.89
Chief complaints
Abdominal pain 9.6 9.7 9.6
Chest pain with cardiac features 5.4 5.4 5.4
Shortness of breath 4.5 4.5 4.6
Lower extremity pain 3.9 4.0 4.0
Minor complaints NOS 3.7 3.6 3.7
Back pain 3.4 3.5 3.4
Headache 3.0 2.9 2.8
General weakness 2.9 2.9 3.0
Lower extremity injury 2.9 2.9 2.8
Localized swelling and redness 2.7 2.8 2.7
Outcome
Critical illness outcome 2 2.1 2.1
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Discussion

Interpretation of findings

All 3 machine learning models demonstrated superior dis-
crimination (by area under ROC or PRC) to a reference 
model using the CTAS score alone as a predictor. The dif-
ference in area under the ROC was greater than 0.088 (well 
over our threshold of 0.05 for clinical significance) for all 
3 machine learning models—corresponding to a 9% differ-
ence in probability of mis-ranking a random visit result-
ing in the outcome over a random visit not resulting in the 
outcome. The difference in area under PRC—was greater 
than 0.11 for all 3 machine learning models (well over our 
threshold of 0.05 for clinical significance) corresponding to 
an 11% difference in average positive predictive value. The 
deep learning model outperformed the other models on all 
measures. Decision Curve Analysis suggests an increased 
net clinical benefit with the use of machine learning models 
as compared to CTAS alone.

Comparison to previous studies

Our deep learning model had an area under the ROC of 
0.926 which was higher than most similar previously 
reported machine learning triage models of which we are 
aware [19, 20, 22]. Differences may be related to a combi-
nation of using CTAS vs. other triage scales, differences in 
outcome definition, lower heterogeneity because of single 
site data or the use of embeddings to process patients’ symp-
toms, which may allow the deep learning model to develop a 
deeper understanding of the clinical significance of patients’ 
symptoms.

Strengths and limitations

The large sample size, accumulated over 9 years in a clini-
cal environment, makes it a good representation of triage 
practice at the study site, but the model weights developed 
here may not generalize to other centers. For incorpora-
tion into a revised version of CTAS, the model would need 
to be retrained on a nationally representative data set. An 
institution-specific machine learning model may maximize 
predictive performance but make comparison or use across 
hospitals difficult. Also, we included the first year of the 
COVID-19 pandemic which significantly altered the pattern 
of ED critical care. A time-based validation of the machine 
learning tools developed here would evaluate the impact 
such a change in case-mix over time would have on perfor-
mance. The MedUrge CTAS triage system used at our center 
collects reasons for visit, past medical history and modifier 

Fig. 1   Receiver Operator Characteristic Curves for the reference 
model  (CTAS) and the 3 machine learning models. Note the curve 
for the CTAS alone model is displayed as 5 single points rather than a 
continuous curve. This is because there are effectively only 5 possible 
threshold choices in this model, corresponding to the 5 CTAS triage 
scores. CTAS Canadian Triage and Acuity Scale

Fig. 2   Precision-Recall Curves for the reference model (CTAS) 
and the 3 machine learning models. Note the curve for the CTAS 
alone model is displayed as 5 single points rather than a continuous 
curve. This is because there are effectively only 5 possible threshold 
choices in this model, corresponding to the 5 CTAS triage scores. 
CTAS Canadian Triage and Acuity Scale
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data in a categorical format which allowed us to generate 
and train the custom embeddings in the deep learning model. 
This approach may allow the model to increase the depth of 
understanding of the patient’s presentation and would be 
straightforward to implement across Quebec because most 
sites employ a similar electronic implementation of CTAS, 
but these systems are not currently used elsewhere in Canada 
to our knowledge.

Not all relevant clinical data can be easily entered into 
an electronic triage tool. For example, a triage nurse’s sub-
jective impression that a patient is more ill than their com-
plaints suggest may improve the quality of triage, but be 
difficult to quantify reliably [34]. The critical illness out-
come we chose may not reflect all needs for urgent care. For 
example, the need for urgent pain control cannot easily be 
incorporated into a machine learning model because pain 
at triage is poorly correlated with actual clinical outcomes 
[35], so any such model trained on clinical outcome data 
will deprioritize pain. Furthermore, some visits (e.g. ana-
phylaxis or severe agitation) require rapid intervention but 
rarely require critical care. Machine learning triage tools 
must be part of a larger triage system that involves human 
judgment and assessment of variables that cannot easily be 
handled electronically or are essential, but poorly captured 
by machine learning.

Clinical implications

The machine learning models ranked the CTAS score as 
the top predictor of critical illness alongside several others 
(e.g. age, arrival by ambulance, requirement for a stretcher) 
that are not currently part of the CTAS triage algorithm. 
The discrimination of CTAS for critical illness might be 
improved by modifying its algorithm to include some of 
these variables. On the other hand, the predictor importance 
plots (Fig. 3) of the deep learning and gradient-boosted trees 
models, show that the combined importance of the remain-
ing hundreds of predictors is greater than the importance 
of the most important predictors. Combining so many pre-
dictors in a human-calculable system may not be feasible 
and incorporating a validated machine learning model into 
future CTAS revisions may be a simpler way to improve the 
discrimination and reliability of ED triage. Such a machine 

learning tool could be added to the CTAS algorithm as a 
“modifier” in a manner analogous to the way the “hemody-
namic stability” modifier is currently used. The predicted 
probability of early critical illness would set a minimum tri-
age score for each visit which could be superseded by other 
factors considered in the CTAS algorithm or by nursing 
judgement. The chief benefit of this approach would be to 
improve the sensitivity of CTAS in detecting certain patients 
who might otherwise be deprioritized. Other approaches 
might include displaying to the triage nurse at the comple-
tion of triage a flag highlighting cases at risk of critical ill-
ness, the actual machine learning estimated probability of 
critical illness or a machine learning recommended triage 
score based on the predicted probability of critical illness. 
The second option would identify low-risk visits as well as 
high-risk visits, which might be useful among visits triaged 
as CTAS 3 (approximately 46% of visits [35]). The third 
option would allow the triage nurse to choose the CTAS 
or machine learning triage score or a score they felt more 
appropriate based on their own judgment.

Research implications

This work suggests that machine learning approaches may 
offer clinical benefits at the point of CTAS ED triage. We 
are currently planning a time-based validation of the models 
developed here. The development of a national-level ED tri-
age dataset would be a great step forward in the development 
of machine learning triage tools for use with CTAS. Such a 
data set, which should contain the predictors in Table 1 as 
well as uniform, high-quality outcome data, would be benefi-
cial to ED research generally and for public health monitor-
ing of ED use. Further research is required to determine the 
optimal approach to incorporating a machine learning triage 
tool into CTAS (including approaches to explainability).

Conclusion

Machine learning models demonstrated improved discrimi-
nation, average positive predictive value and net benefit 
compared to the CTAS alone in predicting the need for early 
critical care. Incorporation of such machine learning tools 

Table 3   Performance Characteristics of the reference model and the 3 machine learning models in the test set

Deep Learning Gradient Boosted Trees LASSO regression CTAS alone

ROC-AUC​
For a random classi-

fier = 0.5

0.926
95% CI (0.923, 0.929)

0.912
95% CI (0.909, 0.915)

0.892
95% CI (0.888, 0.896)

0.804
95% CI (0.798, 0.810)

PR-AUC​
For a random classi-

fier = 0.02

0.27
95% CI (0.26, 0.28)

0.24
95% CI (0.23, 0.25)

0.23
95% CI
(0.22, 0.24)

0.11
95% CI (0.10, 0.12)
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into ED triage protocols may enhance the performance of 
CTAS triage by improving the reliability and discrimination 
of triage.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s43678-​024-​00807-z.
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